Definición del Algoritmo K-Means: K-Means es un
algoritmo de agrupamiento (clustering) que se utiliza para dividir un conjunto
de datos en grupos homogéneos llamados "clusters". Su objetivo
principal es agrupar datos similares en conjuntos y asignar etiquetas a los
grupos. El número de clusters, denotado por "k", es un parámetro que
se establece antes de ejecutar el algoritmo.
Pasos del Algoritmo K-Means:
1. Inicialización de Centroides:
Selecciona aleatoriamente K puntos del conjunto de
datos como centroides iniciales. Un centroide es el punto representativo de un
cluster.
2. Asignación de Puntos a Clúster:
Asigna cada punto del conjunto de datos al cluster
cuyo centroide está más cercano. Esto se hace generalmente utilizando la
distancia euclidiana.
3. Actualización de Centroides:
Recalcula los centroides de cada cluster tomando la
media de todos los puntos asignados a ese cluster.
4. Repetición:
Repite los pasos 2 y 3 hasta que los centroides de los
clusters no cambien significativamente o hasta que se alcance un número
predeterminado de iteraciones.
Funcionamiento del Algoritmo:
· El algoritmo trata de minimizar la suma de las distancias cuadradas entre cada
punto y el centroide de su cluster asignado.
·
En
cada iteración, los puntos pueden cambiar de cluster, y los centroides se
recalculan.
·
El
algoritmo converge cuando los centroides ya no cambian significativamente o
cuando se alcanza un número máximo de iteraciones.
Aplicaciones y Usos de K-Means:
1. Segmentación de Clientes:
En marketing, K-Means puede utilizarse para segmentar
clientes en grupos con características similares, facilitando estrategias de
marketing personalizadas.
2. Compresión de Imágenes:
Puede aplicarse para comprimir imágenes, reduciendo la
cantidad de colores utilizados mientras se mantiene la calidad visual.
3. Agrupamiento de Documentos:
En minería de texto, se puede utilizar para agrupar
documentos similares, facilitando la organización y búsqueda de información.
4. Análisis de Datos Biológicos:
En biología, K-Means se ha utilizado para analizar
patrones en datos genéticos y clasificar genes.
5. Detección de Anomalías:
Puede identificar patrones inusuales en conjuntos de
datos, siendo útil en la detección de anomalías o fraudes.
Ejemplo 1
Ejemplo práctico con Python utilizando la biblioteca
scikit-learn para aplicar el algoritmo K-Means y matplotlib para realizar
algunas visualizaciones.
Este código
realiza los siguientes pasos:
Importa las
bibliotecas necesarias (NumPy, pandas, matplotlib, scikit-learn).
Crea un DataFrame
con los datos de los clientes.
Escala los datos
para que tengan la misma magnitud.
Aplica el
algoritmo K-Means con K=3 clusters.
Visualiza los
resultados mediante un gráfico de dispersión, coloreando cada punto según su
cluster y marcando los centroides en rojo.
Este ejemplo proporcionará una representación visual de cómo se han agrupado los clientes.
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning warnings.warn(
Ejemplo 1
Vamos a crear un conjunto de datos ficticios para la
aplicación de K-Means en la segmentación de clientes para una empresa de
gimnasio. Supongamos que tenemos los siguientes datos:
Nombre del Cliente
Antigüedad del Cliente en meses
Frecuencia que asiste al GYM por semana
Precio de la entrada por mes
Utilizaremos estos datos para segmentar a los clientes
en clusters y visualizar los resultados. con Python utilizando scikit-learn y
matplotlib:
Este código crea un conjunto de datos ficticios para clientes de un gimnasio, aplica el algoritmo K-Means con K=3 clusters y visualiza los resultados en un gráfico de dispersión.
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning warnings.warn(
Ejemplo 2
Del ejemplo 1 se va a ajustar el número de clusters,
explorando diferentes características y analizando las segmentaciones
resultantes. Utilizaremos un número diferente de clusters (por ejemplo, K=4) y
visualizaremos la segmentación en tablas y gráficos. Se mostrará estadísticas
descriptivas para cada cluster.
Código actualizado: Este código ajusta el número de
clusters a 4 y presenta un gráfico de dispersión con los puntos coloreados
según su cluster. También se imprime una tabla con la segmentación de clientes
y estadísticas descriptivas por cluster.
La interpretación de los clusters puede depender de la naturaleza específica de los datos y del contexto del negocio.
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning warnings.warn(



No hay comentarios:
Publicar un comentario